Physics processes & models


This page describes the list of
physical interactions that can be modeled using Geant4-DNA for the simulation of track structures.

A) Models applicable to liquid water, main component of biological medium


These models are available in
Geant4-DNA physics constructors as described in the Physics List section.

They use the « 
G4_WATER » Geant4 NIST material.

Please refer to the
publication section of this web site for more details about the physics model (in particular this review).

The corresponding
process classes, model classes, low energy and high energy limits of applicability of models (the kinetic energy of the particle must be less than this strict high energy limit), energy threshold (also called "tracking cut") below which the incident particle is killed (stopped and the kinetic energy is locally deposited) and type of model (analytical or interpolated), and the corresponding physics constructor are indicated in the list below.

The low and high energy applicability limits used
during the simulation are directly set by the corresponding model classes (and not by process classes).

ELECTRONS (Geant4 name is "e-")

  • Elastic scattering : G4DNAElastic process class
    • G4DNAChampionElasticModel model class
      • applicable energy range : 7.4 eV - 1 MeV
      • cut at 7.4 eV (1)
      • type : interpolated
      • Geant4-DNA physics constructors : default, option2 (*)
    • G4DNAScreenedRutherfordElasticModel
      • applicable energy range : 0 eV - 1 MeV
      • cut at 9 eV (1)
      • type : analytical
      • constructors : -
    • G4DNAUeharaScreenedRutherfordElasticModel
      • applicable energy range : 9 eV - 10 keV
      • cut at 10 eV (1)
      • type : analytical
      • constructors : option4 (*)
    • G4DNACPA100ElasticModel (2)
      • applicable energy range : 11 eV - 255 keV
      • cut at 11 eV (1)
      • type : interpolated
      • constructors : option6 (*)

  • Electronic excitation : G4DNAExcitation
    • G4DNABornExcitationModel
      • applicable energy range : 9 eV - 1 MeV
      • type : interpolated
      • constructors : default, option2
    • G4DNAEmfietzoglouExcitationModel (3)
      • applicable energy range : 8 eV - 10 keV
      • type : interpolated
      • constructors : option4
    • G4DNACPA100ExcitationModel (3)
      • applicable energy range : 11 eV - 255 keV
      • type : interpolated
      • constructors : option6

  • Ionisation : G4DNAIonisation
    • G4DNABornIonisationModel
      • applicable energy range : 11 eV - 1 MeV
      • type : interpolated
      • constructors : default, option2
    • G4DNAEmfietzoglouIonisationModel (4)
      • applicable energy range : 10 eV - 10 keV
      • type : interpolated
      • constructors : option4
    • G4DNACPA100IonisationModel (4)
      • applicable energy range : 11 eV - 255 keV
      • type : interpolated
      • constructors : option6

  • Vibrational excitation : G4DNAVibExcitation
    • G4DNASancheExcitationModel
      • applicable energy range : 2 eV - 100 eV
      • type : interpolated
      • constructors : default, option2

  • Attachment : G4DNAAttachment
    • G4DNAMeltonAttachmentModel
      • applicable energy range : 4 eV - 13 eV
      • type : interpolated
      • constructors : default, option2

(1) indicates the default tracking cut for electrons as set in the Geant4-DNA physics constructors, listed in the Physics List section, when chemistry simulation is not activated.
(2) the G4DNAScreenedRutherfordElasticModel, G4DNAUeharaScreenedRutherfordElasticModel and G4DNACPA100ElasticModel are alternative models for the simulation of elastic scattering.
(3) the G4DNAEmfietzoglouExcitationModel and G4DNACPA100ExcitationModel are alternative models for the simulation of electronic excitation.
(4) the G4DNAEmfietzoglouIonisationModel and G4DNACPA100IOnisationModel are alternative models for the simulation of ionisation.
(*) constructors differ by electron models - see all constructors in the Physics List section.

PROTONS (named "proton")

  • Nuclear scattering : G4DNAElastic
    • G4DNAIonElasticModel
      • applicable energy range : 100 eV - 1 MeV
      • cut at 100 eV (5)
      • type : interpolated
      • Geant4-DNA physics constructors : default, option2, option4, option6

  • Electronic excitation : G4DNAExcitation
    • G4DNAMillerGreenExcitationModel
      • applicable energy range : 10 eV - 500 keV
      • type : analytical
      • constructors : default, option2, option4, option6
    • G4DNABornExcitationModel (3)
      • applicable energy range : 500 keV - 100 MeV
      • type : interpolated
      • constructors : default, option2, option4, option6

  • Ionisation : G4DNAIonisation
    • G4DNARuddIonisationModel (G4DNARuddIonisationExtendedModel is also usable, °)
      • applicable energy range : 0 eV - 500 keV
      • cut at 100 eV (5)
      • type : interpolated
      • constructors : default, option2 (°), option4, option6
    • G4DNABornIonisationModel
      • applicable energy range : 500 keV - 100 MeV
      • type : interpolated
      • constructors : default, option2, option4, option6

  • Electron capture : G4DNAChargeDecrease
    • G4DNADingfelderChargeDecreaseModel
      • applicable energy range : 100 eV - 100 MeV
      • type : analytical
      • constructors : default, option2, option4, option6

(5) indicates the tracking cut applied by the corresponding model.

HYDROGEN ATOMS (named "hydrogen")

  • Nuclear scattering : G4DNAElastic
    • G4DNAIonElasticModel
      • applicable energy range : 100 eV - 1 MeV
      • cut at 100 eV (5)
      • type : interpolated
      • Geant4-DNA physics constructors : default, option2, option4, option6

  • Electronic excitation : G4DNAExcitation
    • G4DNAMillerGreenExcitationModel
      • applicable energy range : 10 eV - 500 keV
      • type : analytical
      • constructors : default, option2, option4, option6

  • Ionisation : G4DNAIonisation
    • G4DNARuddIonisationModel (G4DNARuddIonisationExtendedModel is also usable, °)
      • applicable energy range : 0 eV - 100 MeV
      • cut at 100 eV (5)
      • type : interpolated
      • constructors : default, option2 (°), option4, option6

  • Electron loss : G4DNAChargeIncrease
    • G4DNADingfelderChargeIncreaseModel
      • applicable energy range : 100 eV - 100 MeV
      • type : analytical
      • constructors : default, option2, option4, option6

HELIUM ATOMS IONISED TWICE (named "alpha")

  • Nuclear scattering : G4DNAElastic
    • G4DNAIonElasticModel
      • applicable energy range : 100 eV - 1 MeV
      • cut at 100 eV (5)
      • type : interpolated
      • Geant4-DNA physics constructors : default, option2, option4, option6

  • Electronic excitation : G4DNAExcitation
    • G4DNAMillerGreenExcitationModel
      • applicable energy range : 1 keV - 400 MeV
      • type : analytical
      • constructors : default, option2, option4, option6

  • Ionisation : G4DNAIonisation
    • G4DNARuddIonisationModel (G4DNARuddIonisationExtendedModel is also usable, °)
      • applicable energy range : 0 eV - 400 MeV
      • cut at 1 keV (5)
      • type : interpolated
      • constructors : default, option2 (°), option4, option6

  • Electron capture : G4DNAChargeDecrease
    • G4DNADingfelderChargeDecreaseModel
      • applicable energy range : 1 keV - 400 MeV
      • type : analytical
      • constructors : default, option2, option4, option6

HELIUM ATOMS IONISED ONCE (named "alpha+")

  • Nuclear scattering : G4DNAElastic
    • G4DNAIonElasticModel
      • applicable energy range : 100 eV - 1 MeV
      • cut at 100 eV (5)
      • type : interpolated
      • Geant4-DNA physics constructors : default, option2, option4, option6

  • Electronic excitation : G4DNAExcitation
    • G4DNAMillerGreenExcitationModel
      • applicable energy range : 1 keV - 400 MeV
      • type : analytical
      • constructors : default, option2 (*), option4, option6

  • Ionisation : G4DNAIonisation
    • G4DNARuddIonisationModel (G4DNARuddIonisationExtendedModel is also usable, °)
      • applicable energy range : 0 eV - 400 MeV
      • cut at 1 keV (5)
      • type : interpolated
      • constructors : default, option2 (°), option4, option6

  • Electron capture : G4DNAChargeDecrease
    • G4DNADingfelderChargeDecreaseModel
      • applicable energy range : 1 keV - 400 MeV
      • type : analytical
      • constructors : default, option2, option4, option6

  • Electron loss : G4DNAChargeIncrease
    • G4DNADingfelderChargeIncreaseModel
      • applicable energy range : 1 keV - 400 MeV
      • type : analytical
      • constructors : default, option2, option4, option6

NEUTRAL HELIUM ATOMS (named "helium")

  • Nuclear scattering : G4DNAElastic
    • G4DNAIonElasticModel
      • applicable energy range : 100 eV - 1 MeV
      • cut at 100 eV (5)
      • type : interpolated
      • Geant4-DNA physics constructors : default, option2, option4, option6

  • Electronic excitation : G4DNAExcitation
    • G4DNAMillerGreenExcitationModel
      • applicable energy range : 1 keV - 400 MeV
      • type : analytical
      • constructors : default, option2, option4, option6

  • Ionisation : G4DNAIonisation
    • G4DNARuddIonisationModel (G4DNARuddIonisationExtendedModel is also usable, °)
      • applicable energy range : 0 eV - 400 MeV
      • cut at 1 keV (5)
      • type : interpolated
      • constructors : default, option2 (°), option4, option6

  • Electron loss : G4DNAChargeIncrease
    • G4DNADingfelderChargeIncreaseModel
      • applicable energy range : 1 keV - 400 MeV
      • type : analytical
      • constructors : default, option2, option4, option6

IONS
  • Geant4-DNA can simulate innovation of the following ions : Li (3,7), Be (4,9), B (5,11), C (6,12), N (7,14), O (8,16), Si (14,28), Fe (26,56).
  • Ionisation : G4DNAIonisation process class
    • G4DNARuddIonisationExtendedModel model class
      • applicable energy range : 0.5 MeV/u - 1E6 MeV/u
      • cut at 0.5 MeV/u
      • type : interpolated
      • constructors : option2, option4, option6
  • Refer to the dnaphysics.in macro file of the "dnaphysics" example to see how to shoot Li to Fe ions

GAMMAS (named "gamma")

Gamma interactions are based on the Geant4 Livermore/EADL97 models and they are included by default in all G4EmDNAPhysics* constructors. Please see more on Physics List.

Notes

  • The ionisation models can work in fast computing mode, see FAQ section
  • The G4DNARuddExtendedIonisationModel uses cumulated distribution functions for the computation of secondary electron energy and is significantly faster than the G4DNARuddIonisationModel which uses analytical single differential cross sections. It is used in the option2 constructor for protons, hydrogen atoms, alpha particles and their charge states, and in all constructors for heavier ions.

B) Models applicable to other materials


Additional models are available for the simulation of physical interactions (elastic, excitation, ionisation) in DNA related materials: tetrahydrofuran (THF), trimethylphosphate (TMP), pyrimidine (PY) and purine (PU), serving as precursors for the deoxyribose and phosphate groups in the DNA backbone as well as for the pyrimidine nucleobases.

The models are described by the classes:

  • G4DNAPTBAugerModel
  • G4DNAPTBExcitationModel
  • G4DNAPTBIonisationModel
  • G4DNAPTBElasticModel

They are applicable to electrons (from 12 eV to 1keV) and to protons (70 keV - 10 MeV) and their usage is illustrated in the "icsd" Geant4-DNA example. Note that for protons, only the ionisation process is currently available.