This page describes the list of physical interactions per particle type that can be modeled using the Geant4-DNA interaction.

For now, they are valid for
liquid water only (use the « G4_WATER » Geant4-NIST material).

Please refer to the
publication section of this web site for more details about the physics models.

The corresponding
process classes, model classes, low energy limit applicability of models, high energy applicability of models (the kinetic energy must be less than this strict high energy limit), energy threshold below which the incident particle is killed (stopped and the kinetic energy is locally deposited, also called tracking cut) and type of model (analytical or interpolated) are indicated. The low and high energy applicability limits used at run time are directly set by the corresponding model classes (and not by process classes).

The usage of these classes is described in the
Physics List section.

  • Electron interactions

Interaction
Process class
Model class
Min. energy
Max. energy
Kill (1)
Type
elastic scattering
G4DNAElastic
G4DNAChampionElasticModel
0 eV
1 MeV
7.4 eV
interpolated
elastic scattering
G4DNAElastic
G4DNAScreenedRutherfordElasticModel
0 eV
1 MeV
9 eV
analytical
elastic scattering
G4DNAElastic
G4DNAUeharaScreenedRutherfordElasticModel (2)
0 eV
10 keV
9 eV
analytical
electronic excitation
G4DNAExcitation
G4DNABornExcitationModel
9 eV
1 MeV
-
interpolated
electronic excitation
G4DNAExcitation
G4DNAEmfietzoglouExcitationModel (3)
8 eV
10 keV
-
interpolated
ionisation
G4DNAIonisation
G4DNABornIonisationModel
11 eV
1 MeV
-
interpolated
ionisation
G4DNAIonisation
G4DNAEmfietzoglouIonisationModel (4)
10 eV
10 keV
-
interpolated
vibrational excitation
G4DNAVibExcitation
G4DNASancheExcitationModel
2 eV (1)
100 eV
-
interpolated
attachment
G4DNAAttachment
G4DNAMeltonAttachmentModel
4 eV
13 eV
-
interpolated

(1) indicates the default tracking cut for electrons as set in the Geant4-DNA physics constructors, listed in the Physics List section.
(2) the G4DNAScreenedRutherfordElasticModel and the G4DNAUeharaScreenedRutherfordElasticModel are alternative models for the simulation of elastic scattering.
(3) the G4DNAEmfietzoglouExcitationModel is an alternative model for the simulation of electronic excitation.
(4) the G4DNAEmfietzoglouIonisationModel is an alternative model for the simulation of ionisation.


  • Proton interactions


Interaction
Process class
Model class
Min. energy
Max. energy
Kill (6)
Type
nuclear scattering (5)
G4DNAElastic
G4DNAIonElasticModel
100 eV
1 MeV
100 eV
interpolated
electronic excitation
G4DNAExcitation
G4DNAMillerGreenExcitationModel
10 eV
500 keV
-
analytical
electronic excitation
G4DNAExcitation
G4DNABornExcitationModel
500 keV
100 MeV
-
interpolated
ionisation
G4DNAIonisation
G4DNARuddIonisationModel (G4DNARuddIonisationExtendedModel is also usable)
0 eV
500 keV
100 eV
interpolated
ionisation
G4DNAIonisation
G4DNABornIonisationModel
500 keV
100 MeV
-
interpolated
electron capture
G4DNAChargeDecrease
G4DNADingfelderChargeDecreaseModel
100 eV
100 MeV
-
analytical

(5) the G4DNAElastic process and G4DNAIonElasticModel model must be added explicitely to your physics list, unless you use the G4EmDNAPhysics_option3 constructor.
(6) indicates the tracking cut applied by the corresponding model.


  • Hydrogen interactions


Interaction
Process class
Model class
Min. energy
Max. energy
Kill (6)
Type
nuclear scattering (5)
G4DNAElastic
G4DNAIonElasticModel
100 eV
1 MeV
100 eV
interpolated
electronic excitation
G4DNAExcitation
G4DNAMillerGreenExcitationModel
10 eV
500 keV
-
analytical
ionisation
G4DNAIonisation
G4DNARuddIonisationModel (G4DNARuddIonisationExtendedModel is also usable)
0 keV
100 MeV
100 eV
interpolated
charge increase
G4DNAChargeIncrease
G4DNADingfelderChargeIncreaseModel
100 eV
100 MeV
-
analytical


  • Neutral Helium ionised twice (« alpha ») interactions

Interaction
Process class
Model class
Min. energy
Max. energy
Kill (6)
Type
nuclear scattering (5)
G4DNAElastic
G4DNAIonElasticModel
100 eV
1 MeV
100 eV
interpolated
electronic excitation
G4DNAExcitation
G4DNAMillerGreenExcitationModel
1 keV
400 MeV
-
analytical
ionisation
G4DNAIonisation
G4DNARuddIonisationModel (G4DNARuddIonisationExtendedModel is also usable)
0 keV
400 MeV
1 keV
interpolated
charge decrease
G4DNAChargeDecrease
G4DNADingfelderChargeDecreaseModel
1 keV
400 MeV
-
analytical

  • Neutral Helium ionised once (« alpha+ ») interactions

Interaction
Process class
Model class
Min. energy
Max. energy
Kill (6)
Type
nuclear scattering (5)
G4DNAElastic
G4DNAIonElasticModel
100 eV
1 MeV
100 eV
interpolated
electronic excitation
G4DNAExcitation
G4DNAMillerGreenExcitationModel
1 keV
400 MeV
-
analytical
ionisation
G4DNAIonisation
G4DNARuddIonisationModel (G4DNARuddIonisationExtendedModel is also usable)
0 keV
400 MeV
1 keV
interpolated
charge decrease
G4DNAChargeDecrease
G4DNADingfelderChargeDecreaseModel
1 keV
400 MeV
-
analytical
charge increase
G4DNAChargeIncrease
G4DNADingfelderChargeIncreaseModel
1 keV
400 MeV
-
analytical

  • Neutral Helium (« helium ») interactions


Interaction
Process class
Model class
Min. energy
Max. energy
Kill (6)
Type
nuclear scattering (5)
G4DNAElastic
G4DNAIonElasticModel
100 eV
1 MeV
100 eV
interpolated
electronic excitation
G4DNAExcitation
G4DNAMillerGreenExcitationModel
1 keV
400 MeV
-
analytical
ionisation
G4DNAIonisation
G4DNARuddIonisationModel
(G4DNARuddIonisationExtendedModel is also usable)
0 keV
400 MeV
1 keV
interpolated
charge increase
G4DNAChargeIncrease
G4DNADingfelderChargeIncreaseModel
1 keV
400 MeV
-
analytical


  • Li (3,7), Be (4,9), B (5,11), C (6,12), N (7,14), O (8,16), Si (14,28), Fe (26,56) interactions

Interaction
Process class
Model class
Min. energy
Max. energy
Kill (6)
Type
ionisation
G4DNAIonisation
G4DNARuddIonisationExtendedModel
0.5 MeV/u
1e6 MeV/u
0.5 MeV/u
interpolated

  • Gamma interactions

Gamma interactions are based on the Geant4 Livermore models and they are included by default in the G4EmDNAPhysics* constructors. Please see more on Physics List.

Notes

  • The ionisation models can work in fast computing mode, see FAQ section
  • The G4DNARuddExtendedIonisationModel uses cumulated distribution functions for the computation of secondary electron energy and is faster than the G4DNARuddIonisationModel which uses analytical single differential cross sections
  • Refer to the dnaphysics.in macro file of the dnaphysics example for shooting Li - Fe ions